Hypothesis Testing

Using computer simulation. Based on examples from the infer package. Code for Quiz 13.

Load the R packages we will use

Question: t-test

hr_1_tidy.csv is the name of your data subset

hr <- read_csv("https://estanny.com/static/week13/data/hr_1_tidy.csv",
               col_types = "fddfff")

use the skim to summarize the data in hr

skim(hr)
Table 1: Data summary
Name hr
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 4
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 fem: 260, mal: 240
evaluation 0 1 FALSE 4 bad: 153, fai: 142, goo: 106, ver: 99
salary 0 1 FALSE 6 lev: 93, lev: 92, lev: 91, lev: 84
status 0 1 FALSE 3 fir: 185, pro: 162, ok: 153

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age 0 1 40.60 11.58 20.2 30.37 41.00 50.82 59.9 ▇▇▇▇▇
hours 0 1 49.32 13.13 35.0 37.55 45.25 58.45 79.7 ▇▂▃▂▂

The mean hours worked per week is 49.3232

Specify that hours is the variable of interest

hr %>% specify(response = hours)
Response: hours (numeric)
# A tibble: 500 x 1
   hours
   <dbl>
 1  36.5
 2  55.8
 3  35  
 4  52  
 5  35.1
 6  36.3
 7  40.1
 8  42.7
 9  66.6
10  35.5
# ... with 490 more rows

hypothesize that the average hours worked is 48

hr %>% specify(response = hours) %>%
  hypothesize(null = "point", mu = 48)
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500 x 1
   hours
   <dbl>
 1  36.5
 2  55.8
 3  35  
 4  52  
 5  35.1
 6  36.3
 7  40.1
 8  42.7
 9  66.6
10  35.5
# ... with 490 more rows

generate 1000 replicates representing the null hypothesis

hr %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 48) %>%
  generate(reps = 1000, type = "bootstrap")
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 500,000 x 2
# Groups:   replicate [1,000]
   replicate hours
       <int> <dbl>
 1         1  33.7
 2         1  34.9
 3         1  46.6
 4         1  33.8
 5         1  61.2
 6         1  34.7
 7         1  37.9
 8         1  39.0
 9         1  62.8
10         1  50.9
# ... with 499,990 more rows

calculate the distribution of statistics from the generated data

null_t_distribution <- hr %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 48) %>%
  generate(reps = 1000, type = "bootstrap") %>%
  calculate(stat = "t")

null_t_distribution
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1 -0.222
 2         2 -0.912
 3         3  1.61 
 4         4  0.318
 5         5 -0.915
 6         6 -0.538
 7         7  0.307
 8         8 -0.147
 9         9 -0.520
10        10 -0.238
# ... with 990 more rows

Visualize the simulated null distribution

visualize(null_t_distribution)


`Calculate the statistic from your observed data

observed_t_statistic <- hr %>%
  specify(response = hours) %>%
  hypothesize(null = "point", mu = 48) %>%
  calculate(stat = "t")

observed_t_statistic
Response: hours (numeric)
Null Hypothesis: point
# A tibble: 1 x 1
   stat
  <dbl>
1  2.25

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution %>%
  get_p_value(obs_stat = observed_t_statistic, direction ="two_sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.028

shade_p_value on the simulated null distribution

null_t_distribution %>%
  visualize() +
    shade_p_value(obs_stat = observed_t_statistic, direction = "two_sided")

Is the p-value < 0.05? yes

Does your analysis support the null hypothesis that the true mean number of hours worked was 48? no


Question: 2 sample t-test

hr_1_tidy.csv is the name of your data subset

IS the average number of hours worked the same for both genders in hr_2?

use skim to summarize the data in hr_2 by gender

hr_2 %>%
  group_by(gender) %>%
  skim()
Table 2: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables gender

Variable type: factor

skim_variable gender n_missing complete_rate ordered n_unique top_counts
evaluation female 0 1 FALSE 4 fai: 81, bad: 71, ver: 57, goo: 51
evaluation male 0 1 FALSE 4 bad: 82, fai: 61, goo: 55, ver: 42
salary female 0 1 FALSE 6 lev: 54, lev: 50, lev: 44, lev: 41
salary male 0 1 FALSE 6 lev: 52, lev: 47, lev: 46, lev: 39
status female 0 1 FALSE 3 fir: 96, pro: 87, ok: 77
status male 0 1 FALSE 3 fir: 89, ok: 76, pro: 75

Variable type: numeric

skim_variable gender n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age female 0 1 41.78 11.50 20.5 32.15 42.35 51.62 59.9 ▆▅▇▆▇
age male 0 1 39.32 11.55 20.2 28.70 38.55 49.52 59.7 ▇▇▆▇▆
hours female 0 1 50.32 13.23 35.0 38.38 47.80 60.40 79.7 ▇▃▃▂▂
hours male 0 1 48.24 12.95 35.0 37.00 42.40 57.00 78.1 ▇▂▂▁▂

Use geom_boxplot to plot distributions of hours worked by gender

hr_2 %>%
  ggplot(aes(x = gender, y = hours)) +
    geom_boxplot()


specify the variables of interest are hours and gender

hr_2 %>%
  specify(response = hours, explanatory = gender)
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  36.5 female
 2  55.8 female
 3  35   male  
 4  52   female
 5  35.1 male  
 6  36.3 female
 7  40.1 female
 8  42.7 female
 9  66.6 male  
10  35.5 male  
# ... with 490 more rows

hypothesize that the number of hours worked and gender are independent

hr_2 %>%
  specify(response = hours, explanatory = gender) %>%
  hypothesise(null = "independence")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours gender
   <dbl> <fct> 
 1  36.5 female
 2  55.8 female
 3  35   male  
 4  52   female
 5  35.1 male  
 6  36.3 female
 7  40.1 female
 8  42.7 female
 9  66.6 male  
10  35.5 male  
# ... with 490 more rows

generate 1000 replicates representing the null hypothesis

hr_2 %>%
  specify(response = hours, explanatory = gender) %>%
  hypothesise(null = "independence") %>%
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours gender replicate
   <dbl> <fct>      <int>
 1  36.4 female         1
 2  35.8 female         1
 3  35.6 male           1
 4  39.6 female         1
 5  35.8 male           1
 6  55.8 female         1
 7  63.8 female         1
 8  40.3 female         1
 9  56.5 male           1
10  50.1 male           1
# ... with 499,990 more rows

Calculate the distribution of statistics from teh generated data

null_distribution_2_sample_permute <- hr_2 %>%
  specify(response = hours, explanatory = gender) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  calculate(stat = "t", order = c("female","male"))

null_distribution_2_sample_permute
Response: hours (numeric)
Explanatory: gender (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate   stat
       <int>  <dbl>
 1         1 -0.208
 2         2 -0.328
 3         3 -2.28 
 4         4  0.528
 5         5  1.60 
 6         6  0.795
 7         7  1.24 
 8         8 -3.31 
 9         9  0.517
10        10  0.949
# ... with 990 more rows

Visualize the simulated null distribution
visualize(null_distribution_2_sample_permute)


calculate the statistic from your observed data

observed_t_2_sample_stat <- hr_2 %>%
  specify(response = hours, explanatory = gender) %>%
  calculate(stat = "t", order = c("female", "male"))

observed_t_2_sample_stat
Response: hours (numeric)
Explanatory: gender (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1  1.78

get_p_value from the simulated null distribution and the observed statistic

null_t_distribution %>%
  get_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")
# A tibble: 1 x 1
  p_value
    <dbl>
1   0.072

shade_p_value on the simulated null distribution

null_t_distribution %>%
  visualize() +
  shade_p_value(obs_stat = observed_t_2_sample_stat, direction = "two-sided")


Question 3 is the average number of hours worked the same for all three status (fired, ok, and promoted)?

hr_2_tidy_csv is the name of your data subset * Read it into and assign to hr_anova * Note: col-types = fddfff” defines the column types factor-double-double-factor-factor-factor

hr_anova <- read_csv("https://estanny.com/static/week13/data/hr_2_tidy.csv",
                     col_types="fddfff")

use skim to summarize the data in hr_anova by status

hr_anova %>%
  group_by(status) %>%
  skim()
Table 3: Data summary
Name Piped data
Number of rows 500
Number of columns 6
_______________________
Column type frequency:
factor 3
numeric 2
________________________
Group variables status

Variable type: factor

skim_variable status n_missing complete_rate ordered n_unique top_counts
gender promoted 0 1 FALSE 2 mal: 90, fem: 89
gender fired 0 1 FALSE 2 fem: 101, mal: 93
gender ok 0 1 FALSE 2 mal: 73, fem: 54
evaluation promoted 0 1 FALSE 4 goo: 70, ver: 62, fai: 24, bad: 23
evaluation fired 0 1 FALSE 4 bad: 78, fai: 72, goo: 25, ver: 19
evaluation ok 0 1 FALSE 4 bad: 53, fai: 46, ver: 15, goo: 13
salary promoted 0 1 FALSE 6 lev: 42, lev: 42, lev: 39, lev: 34
salary fired 0 1 FALSE 6 lev: 54, lev: 44, lev: 34, lev: 24
salary ok 0 1 FALSE 6 lev: 32, lev: 31, lev: 26, lev: 19

Variable type: numeric

skim_variable status n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
age promoted 0 1 40.63 11.25 20.4 30.75 41.10 50.25 59.9 ▆▇▇▇▇
age fired 0 1 40.03 11.53 20.3 29.45 40.40 50.08 59.9 ▇▅▇▆▆
age ok 0 1 38.50 11.98 20.3 28.15 38.70 49.45 59.9 ▇▆▅▅▆
hours promoted 0 1 59.21 12.66 35.0 49.75 58.90 70.65 79.9 ▅▆▇▇▇
hours fired 0 1 41.67 8.37 35.0 36.10 38.45 43.40 77.7 ▇▂▁▁▁
hours ok 0 1 47.35 10.86 35.0 37.10 45.70 54.50 78.9 ▇▅▃▂▁

Use geom_boxplot to plot distributions of hours worked by status

hr_anova %>%
  ggplot(aes(x = status, y = hours)) +
  geom_boxplot()


specify the variables of interest are hours and status

hr_anova %>%
  specify(response = hours, explanatory = status)
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  78.1 promoted
 2  35.1 fired   
 3  36.9 fired   
 4  38.5 fired   
 5  36.1 fired   
 6  78.1 promoted
 7  76   promoted
 8  35.6 fired   
 9  35.6 ok      
10  56.8 promoted
# ... with 490 more rows

hypothesize that the number of hours worked and status are independent

hr_anova %>%
  specify(response = hours, explanatory = status) %>%
  hypothesize(null = "independence")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500 x 2
   hours status  
   <dbl> <fct>   
 1  78.1 promoted
 2  35.1 fired   
 3  36.9 fired   
 4  38.5 fired   
 5  36.1 fired   
 6  78.1 promoted
 7  76   promoted
 8  35.6 fired   
 9  35.6 ok      
10  56.8 promoted
# ... with 490 more rows

Generate 1000 replicates representing the null hypothesis
hr_anova %>%
  specify(response = hours, explanatory = status) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute")
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 500,000 x 3
# Groups:   replicate [1,000]
   hours status   replicate
   <dbl> <fct>        <int>
 1  41.9 promoted         1
 2  36.7 fired            1
 3  35   fired            1
 4  58.9 fired            1
 5  36.1 fired            1
 6  39.4 promoted         1
 7  54.3 promoted         1
 8  59.2 fired            1
 9  40.2 ok               1
10  35.3 promoted         1
# ... with 499,990 more rows

The output has 500000 rows


Calculate the distribution of statistics from the generated data * Assign the output null_distribution_anova * Display null_distribution_anova

null_distribution_anova <- hr_anova %>%
  specify(response = hours, explanatory = status) %>%
  hypothesize(null = "independence") %>%
  generate(reps = 1000, type = "permute") %>%
  calculate(stat = "F")

null_distribution_anova
Response: hours (numeric)
Explanatory: status (factor)
Null Hypothesis: independence
# A tibble: 1,000 x 2
   replicate  stat
       <int> <dbl>
 1         1 0.312
 2         2 2.85 
 3         3 0.369
 4         4 0.142
 5         5 0.511
 6         6 2.73 
 7         7 1.06 
 8         8 0.171
 9         9 0.310
10        10 1.11 
# ... with 990 more rows

visualize(null_distribution_anova)


calculate the statistic from your oberserved data * Assign the output observed_f_sample_stat * Displayobserved_f_sample_stat`

observed_f_sample_stat <- hr_anova %>%
  specify(response = hours, explanatory = status) %>%
  calculate(stat = "F")

observed_f_sample_stat
Response: hours (numeric)
Explanatory: status (factor)
# A tibble: 1 x 1
   stat
  <dbl>
1  128.

get_p_value from the simulated null distribution and the observed statistic

null_distribution_anova %>%
  get_p_value(obs_stat = observed_f_sample_stat, direction = "greater")
# A tibble: 1 x 1
  p_value
    <dbl>
1       0

shade_p_value on the simulated null distribution

null_distribution_anova %>%
  visualize() +
  shade_p_value(obs_stat = observed_f_sample_stat, direction = "greater")

ggsave(filename = "preview.png",
       path = here::here("_posts","2022-05-03-hypothesis-testing"))

Is the p-value < 0.05? yes

Does your analysis support the null hypothesis that the true means of the number of hours worked for those that were “fired”, “ok” and “promoted” were the same? no