Exploratory analysis

Data visualization, part 1. Code for quiz 7.

Introduction

  1. Load the R packages we will use.
  1. Quiz Questions

Question: Modify slide 34

ggplot(faithful)+
  geom_point(aes(x = eruptions,
                 y = waiting,
                 color = waiting > 76))


Question: modify intro-slide 35

ggplot(faithful) +
  geom_point(aes(x=eruptions,
                 y=waiting),
             color = 'purple')


Question: modify intro-slide 36

ggplot(faithful)+
  geom_histogram(aes(x= waiting))


Question: modify geom-ex-1

ggplot(faithful)+
  geom_point(aes(x=eruptions,
                 y=waiting),
             shape = "diamond", size = 5, alpha = 0.9)


Question: Modify geom-ex-2

ggplot(faithful)+
  geom_histogram(aes(x=eruptions, fill = eruptions > 3.2))


Question: Modify stat-slide-40

ggplot(mpg) +
  geom_bar(aes(x= manufacturer))


Question: Modify stat-slide-41

mpg_counted <- mpg %>%
  count(manufacturer, name = 'count')
ggplot(mpg_counted) +
  geom_bar(aes(x = manufacturer,
               y = count),
           stat = 'identity')


Question: Modify stat-slide-43

ggplot(mpg) +
  geom_bar(aes(x=manufacturer, y = after_stat(100 * count / sum(count))))


Question: Modify answer to stat-ex-2

For reference see here

Use stat_summary() to add a dot at the median of each group

ggplot(mpg)+
  geom_jitter(aes(x=class,
                  y=hwy),
              width = 0.2) +
  stat_summary(aes(x = class,
                   y= hwy),
              geom = "point",
              fun = "median",
              color = "purple",
              shape = "square",
              size = 9)

ggsave(filename = "preview.png",
       path= here::here("_posts", "2022-03-17-exploratory-analysis"))