Data Manipulation

Code for Quiz 5. More practice with dplyer functions.

  1. Load the R packages we will use.
  1. Read in the data file, drug_cos.csv in to R and assign it to drug_cos.
drug_cos <- read_csv("https://estanny.com/static/week5/drug_cos.csv")
  1. Use gimpse() to get a glimpse of your data
glimpse(drug_cos)
Rows: 104
Columns: 9
$ ticker       <chr> "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS", "ZTS"~
$ name         <chr> "Zoetis Inc", "Zoetis Inc", "Zoetis Inc", "Zoet~
$ location     <chr> "New Jersey; U.S.A", "New Jersey; U.S.A", "New ~
$ ebitdamargin <dbl> 0.149, 0.217, 0.222, 0.238, 0.182, 0.335, 0.366~
$ grossmargin  <dbl> 0.610, 0.640, 0.634, 0.641, 0.635, 0.659, 0.666~
$ netmargin    <dbl> 0.058, 0.101, 0.111, 0.122, 0.071, 0.168, 0.163~
$ ros          <dbl> 0.101, 0.171, 0.176, 0.195, 0.140, 0.286, 0.321~
$ roe          <dbl> 0.069, 0.113, 0.612, 0.465, 0.285, 0.587, 0.488~
$ year         <dbl> 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018,~
  1. Use distinct() to subset distinct rows.
drug_cos %>%
  distinct(year)
# A tibble: 8 x 1
   year
  <dbl>
1  2011
2  2012
3  2013
4  2014
5  2015
6  2016
7  2017
8  2018
drug_cos %>%
  count(name)
# A tibble: 13 x 2
   name                        n
   <chr>                   <int>
 1 AbbVie Inc                  8
 2 Allergan plc                8
 3 Amgen Inc                   8
 4 Biogen Inc                  8
 5 Bristol Myers Squibb Co     8
 6 ELI LILLY & Co              8
 7 Gilead Sciences Inc         8
 8 Johnson & Johnson           8
 9 Merck & Co Inc              8
10 Mylan NV                    8
11 PERRIGO Co plc              8
12 Pfizer Inc                  8
13 Zoetis Inc                  8
drug_cos %>%
  count(ticker, name)
# A tibble: 13 x 3
   ticker name                        n
   <chr>  <chr>                   <int>
 1 ABBV   AbbVie Inc                  8
 2 AGN    Allergan plc                8
 3 AMGN   Amgen Inc                   8
 4 BIIB   Biogen Inc                  8
 5 BMY    Bristol Myers Squibb Co     8
 6 GILD   Gilead Sciences Inc         8
 7 JNJ    Johnson & Johnson           8
 8 LLY    ELI LILLY & Co              8
 9 MRK    Merck & Co Inc              8
10 MYL    Mylan NV                    8
11 PFE    Pfizer Inc                  8
12 PRGO   PERRIGO Co plc              8
13 ZTS    Zoetis Inc                  8
  1. Use filter() to extract rows that meet criteria

  2. Extract rows in non-consecutive years

drug_cos %>%
    filter(year %in% c(2013,2018))
# A tibble: 26 x 9
   ticker name       location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr>      <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoetis Inc New Jer~        0.222       0.634     0.111 0.176
 2 ZTS    Zoetis Inc New Jer~        0.379       0.672     0.245 0.326
 3 PRGO   PERRIGO C~ Ireland         0.236       0.362     0.125 0.19 
 4 PRGO   PERRIGO C~ Ireland         0.178       0.387     0.028 0.088
 5 PFE    Pfizer Inc New Yor~        0.634       0.814     0.427 0.51 
 6 PFE    Pfizer Inc New Yor~        0.34        0.79      0.208 0.221
 7 MYL    Mylan NV   United ~        0.228       0.44      0.09  0.153
 8 MYL    Mylan NV   United ~        0.258       0.35      0.031 0.074
 9 MRK    Merck & C~ New Jer~        0.282       0.615     0.1   0.123
10 MRK    Merck & C~ New Jer~        0.313       0.681     0.147 0.206
# ... with 16 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Extract every other year from 2012 to 2018
drug_cos %>%
  filter(year %in% seq(2012, 2018, by = 2))
# A tibble: 52 x 9
   ticker name      location ebitdamargin grossmargin netmargin    ros
   <chr>  <chr>     <chr>           <dbl>       <dbl>     <dbl>  <dbl>
 1 ZTS    Zoetis I~ New Jer~        0.217       0.64      0.101  0.171
 2 ZTS    Zoetis I~ New Jer~        0.238       0.641     0.122  0.195
 3 ZTS    Zoetis I~ New Jer~        0.335       0.659     0.168  0.286
 4 ZTS    Zoetis I~ New Jer~        0.379       0.672     0.245  0.326
 5 PRGO   PERRIGO ~ Ireland         0.226       0.345     0.127  0.183
 6 PRGO   PERRIGO ~ Ireland         0.157       0.371     0.059  0.104
 7 PRGO   PERRIGO ~ Ireland        -0.791       0.389    -0.76  -0.877
 8 PRGO   PERRIGO ~ Ireland         0.178       0.387     0.028  0.088
 9 PFE    Pfizer I~ New Yor~        0.447       0.82      0.267  0.307
10 PFE    Pfizer I~ New Yor~        0.359       0.807     0.184  0.247
# ... with 42 more rows, and 2 more variables: roe <dbl>, year <dbl>
  1. Extract the tickers “PFE” and “MYL”
drug_cos %>%
  filter(ticker %in% c("PFE", "MYL"))
# A tibble: 16 x 9
   ticker name       location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr>      <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 PFE    Pfizer Inc New Yor~        0.371       0.795     0.164 0.223
 2 PFE    Pfizer Inc New Yor~        0.447       0.82      0.267 0.307
 3 PFE    Pfizer Inc New Yor~        0.634       0.814     0.427 0.51 
 4 PFE    Pfizer Inc New Yor~        0.359       0.807     0.184 0.247
 5 PFE    Pfizer Inc New Yor~        0.289       0.803     0.142 0.183
 6 PFE    Pfizer Inc New Yor~        0.267       0.767     0.137 0.158
 7 PFE    Pfizer Inc New Yor~        0.353       0.786     0.406 0.233
 8 PFE    Pfizer Inc New Yor~        0.34        0.79      0.208 0.221
 9 MYL    Mylan NV   United ~        0.245       0.418     0.088 0.161
10 MYL    Mylan NV   United ~        0.244       0.428     0.094 0.163
11 MYL    Mylan NV   United ~        0.228       0.44      0.09  0.153
12 MYL    Mylan NV   United ~        0.242       0.457     0.12  0.169
13 MYL    Mylan NV   United ~        0.243       0.447     0.09  0.133
14 MYL    Mylan NV   United ~        0.19        0.424     0.043 0.052
15 MYL    Mylan NV   United ~        0.272       0.402     0.058 0.121
16 MYL    Mylan NV   United ~        0.258       0.35      0.031 0.074
# ... with 2 more variables: roe <dbl>, year <dbl>
  1. Select columns ticker, name and ros
drug_cos %>%
  select(ticker,name,ros)
# A tibble: 104 x 3
   ticker name             ros
   <chr>  <chr>          <dbl>
 1 ZTS    Zoetis Inc     0.101
 2 ZTS    Zoetis Inc     0.171
 3 ZTS    Zoetis Inc     0.176
 4 ZTS    Zoetis Inc     0.195
 5 ZTS    Zoetis Inc     0.14 
 6 ZTS    Zoetis Inc     0.286
 7 ZTS    Zoetis Inc     0.321
 8 ZTS    Zoetis Inc     0.326
 9 PRGO   PERRIGO Co plc 0.178
10 PRGO   PERRIGO Co plc 0.183
# ... with 94 more rows
  1. Use select to exclude columns ticker, name and ros
drug_cos %>%
  select(-ticker,-name,-ros)
# A tibble: 104 x 6
   location          ebitdamargin grossmargin netmargin   roe  year
   <chr>                    <dbl>       <dbl>     <dbl> <dbl> <dbl>
 1 New Jersey; U.S.A        0.149       0.61      0.058 0.069  2011
 2 New Jersey; U.S.A        0.217       0.64      0.101 0.113  2012
 3 New Jersey; U.S.A        0.222       0.634     0.111 0.612  2013
 4 New Jersey; U.S.A        0.238       0.641     0.122 0.465  2014
 5 New Jersey; U.S.A        0.182       0.635     0.071 0.285  2015
 6 New Jersey; U.S.A        0.335       0.659     0.168 0.587  2016
 7 New Jersey; U.S.A        0.366       0.666     0.163 0.488  2017
 8 New Jersey; U.S.A        0.379       0.672     0.245 0.694  2018
 9 Ireland                  0.216       0.343     0.123 0.248  2011
10 Ireland                  0.226       0.345     0.127 0.236  2012
# ... with 94 more rows
  1. Rename and reorder columns with select

-start with drug_cos THEN

-change the name of location to headquarter

-put the columns in this order: year, ticker, headquarter, net margin, roe

drug_cos %>%
  select(year,ticker,headquarter = location, netmargin, roe)
# A tibble: 104 x 5
    year ticker headquarter       netmargin   roe
   <dbl> <chr>  <chr>                 <dbl> <dbl>
 1  2011 ZTS    New Jersey; U.S.A     0.058 0.069
 2  2012 ZTS    New Jersey; U.S.A     0.101 0.113
 3  2013 ZTS    New Jersey; U.S.A     0.111 0.612
 4  2014 ZTS    New Jersey; U.S.A     0.122 0.465
 5  2015 ZTS    New Jersey; U.S.A     0.071 0.285
 6  2016 ZTS    New Jersey; U.S.A     0.168 0.587
 7  2017 ZTS    New Jersey; U.S.A     0.163 0.488
 8  2018 ZTS    New Jersey; U.S.A     0.245 0.694
 9  2011 PRGO   Ireland               0.123 0.248
10  2012 PRGO   Ireland               0.127 0.236
# ... with 94 more rows

Question: filter and select

Use inputs from your quiz question filter and select and replace SEE QuIZ with inputs from your quiz and replace the ??? in the code

-start with drug_cos -extract information for the tickers MRK, MYL,PFE THEN -select the variables ticker, year and ebitdamargin

drug_cos %>%
  filter(ticker %in% c("MRK", "MYL", "PFE")) %>%
  select(ticker, year, ebitdamargin)
# A tibble: 24 x 3
   ticker  year ebitdamargin
   <chr>  <dbl>        <dbl>
 1 PFE     2011        0.371
 2 PFE     2012        0.447
 3 PFE     2013        0.634
 4 PFE     2014        0.359
 5 PFE     2015        0.289
 6 PFE     2016        0.267
 7 PFE     2017        0.353
 8 PFE     2018        0.34 
 9 MYL     2011        0.245
10 MYL     2012        0.244
# ... with 14 more rows

Question: Rename

-start with drug_cos THEN -extract information for the tickers AGN, ZTS THEN -select the variables ticker, netmargin, and roe. Change the name of roe to return_on_equity.

drug_cos %>%
  filter(ticker %in% c("AGN", "ZTS")) %>%
  select(ticker, netmargin, return_on_equity = roe)
# A tibble: 16 x 3
   ticker netmargin return_on_equity
   <chr>      <dbl>            <dbl>
 1 ZTS        0.058            0.069
 2 ZTS        0.101            0.113
 3 ZTS        0.111            0.612
 4 ZTS        0.122            0.465
 5 ZTS        0.071            0.285
 6 ZTS        0.168            0.587
 7 ZTS        0.163            0.488
 8 ZTS        0.245            0.694
 9 AGN        0.057            0.075
10 AGN        0.016            0.026
11 AGN       -0.288           -0.147
12 AGN       -0.349           -0.085
13 AGN        0.29             0.05 
14 AGN        1.01             0.184
15 AGN       -0.276           -0.06 
16 AGN       -0.326           -0.074
  1. select ranges of columns
drug_cos %>%
  select(ebitdamargin:netmargin)
# A tibble: 104 x 3
   ebitdamargin grossmargin netmargin
          <dbl>       <dbl>     <dbl>
 1        0.149       0.61      0.058
 2        0.217       0.64      0.101
 3        0.222       0.634     0.111
 4        0.238       0.641     0.122
 5        0.182       0.635     0.071
 6        0.335       0.659     0.168
 7        0.366       0.666     0.163
 8        0.379       0.672     0.245
 9        0.216       0.343     0.123
10        0.226       0.345     0.127
# ... with 94 more rows
drug_cos %>%
  select(4:6)
# A tibble: 104 x 3
   ebitdamargin grossmargin netmargin
          <dbl>       <dbl>     <dbl>
 1        0.149       0.61      0.058
 2        0.217       0.64      0.101
 3        0.222       0.634     0.111
 4        0.238       0.641     0.122
 5        0.182       0.635     0.071
 6        0.335       0.659     0.168
 7        0.366       0.666     0.163
 8        0.379       0.672     0.245
 9        0.216       0.343     0.123
10        0.226       0.345     0.127
# ... with 94 more rows
  1. select helper functions
drug_cos %>%
  select(ticker,contains("locat"))
# A tibble: 104 x 2
   ticker location         
   <chr>  <chr>            
 1 ZTS    New Jersey; U.S.A
 2 ZTS    New Jersey; U.S.A
 3 ZTS    New Jersey; U.S.A
 4 ZTS    New Jersey; U.S.A
 5 ZTS    New Jersey; U.S.A
 6 ZTS    New Jersey; U.S.A
 7 ZTS    New Jersey; U.S.A
 8 ZTS    New Jersey; U.S.A
 9 PRGO   Ireland          
10 PRGO   Ireland          
# ... with 94 more rows
drug_cos %>%
  select(ticker,starts_with("r"))
# A tibble: 104 x 3
   ticker   ros   roe
   <chr>  <dbl> <dbl>
 1 ZTS    0.101 0.069
 2 ZTS    0.171 0.113
 3 ZTS    0.176 0.612
 4 ZTS    0.195 0.465
 5 ZTS    0.14  0.285
 6 ZTS    0.286 0.587
 7 ZTS    0.321 0.488
 8 ZTS    0.326 0.694
 9 PRGO   0.178 0.248
10 PRGO   0.183 0.236
# ... with 94 more rows
drug_cos %>%
  select(year, ends_with("margin"))
# A tibble: 104 x 4
    year ebitdamargin grossmargin netmargin
   <dbl>        <dbl>       <dbl>     <dbl>
 1  2011        0.149       0.61      0.058
 2  2012        0.217       0.64      0.101
 3  2013        0.222       0.634     0.111
 4  2014        0.238       0.641     0.122
 5  2015        0.182       0.635     0.071
 6  2016        0.335       0.659     0.168
 7  2017        0.366       0.666     0.163
 8  2018        0.379       0.672     0.245
 9  2011        0.216       0.343     0.123
10  2012        0.226       0.345     0.127
# ... with 94 more rows

Use group_by to set up data for operations by group

  1. group_by
drug_cos %>%
  group_by(ticker)
# A tibble: 104 x 9
# Groups:   ticker [13]
   ticker name       location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr>      <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoetis Inc New Jer~        0.149       0.61      0.058 0.101
 2 ZTS    Zoetis Inc New Jer~        0.217       0.64      0.101 0.171
 3 ZTS    Zoetis Inc New Jer~        0.222       0.634     0.111 0.176
 4 ZTS    Zoetis Inc New Jer~        0.238       0.641     0.122 0.195
 5 ZTS    Zoetis Inc New Jer~        0.182       0.635     0.071 0.14 
 6 ZTS    Zoetis Inc New Jer~        0.335       0.659     0.168 0.286
 7 ZTS    Zoetis Inc New Jer~        0.366       0.666     0.163 0.321
 8 ZTS    Zoetis Inc New Jer~        0.379       0.672     0.245 0.326
 9 PRGO   PERRIGO C~ Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERRIGO C~ Ireland         0.226       0.345     0.127 0.183
# ... with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>
drug_cos %>%
  group_by(year)
# A tibble: 104 x 9
# Groups:   year [8]
   ticker name       location ebitdamargin grossmargin netmargin   ros
   <chr>  <chr>      <chr>           <dbl>       <dbl>     <dbl> <dbl>
 1 ZTS    Zoetis Inc New Jer~        0.149       0.61      0.058 0.101
 2 ZTS    Zoetis Inc New Jer~        0.217       0.64      0.101 0.171
 3 ZTS    Zoetis Inc New Jer~        0.222       0.634     0.111 0.176
 4 ZTS    Zoetis Inc New Jer~        0.238       0.641     0.122 0.195
 5 ZTS    Zoetis Inc New Jer~        0.182       0.635     0.071 0.14 
 6 ZTS    Zoetis Inc New Jer~        0.335       0.659     0.168 0.286
 7 ZTS    Zoetis Inc New Jer~        0.366       0.666     0.163 0.321
 8 ZTS    Zoetis Inc New Jer~        0.379       0.672     0.245 0.326
 9 PRGO   PERRIGO C~ Ireland         0.216       0.343     0.123 0.178
10 PRGO   PERRIGO C~ Ireland         0.226       0.345     0.127 0.183
# ... with 94 more rows, and 2 more variables: roe <dbl>, year <dbl>

Use summarize to calculate summary statistics

  1. Maximum roe for all companies
drug_cos %>%
  summarize(max_roe= max(roe))
# A tibble: 1 x 1
  max_roe
    <dbl>
1    1.31

-maximum roe for each year

drug_cos %>%
  group_by(year) %>%
  summarize (max_roe = max(roe))
# A tibble: 8 x 2
   year max_roe
  <dbl>   <dbl>
1  2011   0.451
2  2012   0.69 
3  2013   1.13 
4  2014   0.828
5  2015   1.31 
6  2016   1.11 
7  2017   0.932
8  2018   0.694

-maximum roe for each ticker

drug_cos %>%
  group_by(ticker) %>%
  summarize (max_roe = max(roe))
# A tibble: 13 x 2
   ticker max_roe
   <chr>    <dbl>
 1 ABBV     1.31 
 2 AGN      0.184
 3 AMGN     0.585
 4 BIIB     0.334
 5 BMY      0.373
 6 GILD     1.04 
 7 JNJ      0.244
 8 LLY      0.306
 9 MRK      0.248
10 MYL      0.283
11 PFE      0.342
12 PRGO     0.248
13 ZTS      0.694

Question: summarize

Mean for year Find the mean ros for each year and call the variable mean_ros Extract the mean for ros for 2016

ros1 <- drug_cos %>%
  group_by(year) %>%
  summarize(mean_ros= mean(ros)) %>%
  filter(year==2016)

The mean ros for 2016 is 0.253 or 25.3%

Median for year Find the median ros for each year and call the variable median_ros Extract the median for ros for 2016

ros2 <- drug_cos %>%
  group_by(year) %>%
  summarize(median_ros= median(ros)) %>%
  filter(year==2016)

The median ros for 2016 is 0.286 or 28.6%

  1. Pick a ratio and a year and compare the companies.
drug_cos %>%
  filter(year==2015) %>%
  ggplot(aes(x=roe,y=reorder(name,roe))) +
  geom_col() +
    scale_x_continuous(labels =scales::percent) +
    labs(title="Comparison of return on equity",
         subtitle="for drug companies during 2015",
         x= NULL, y= NULL)+
    theme_classic()

  1. Pick a company and a ratio and compare the ratio over time.
drug_cos %>%
  filter(ticker=="MRK") %>%
  ggplot(aes(x=year,y=netmargin)) +
  geom_col() +
    scale_y_continuous(labels =scales::percent) +
    labs(title="Comparison of net margin",
         subtitle="for Merck from 2011 to 2018",
         x= NULL, y= NULL)+
    theme_classic()
ggsave(filename="preview.png",
       path= here::here("_posts","2022-03-01-data-manipulation"))