A short description of the post.
Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.
Assign the location of the file ‘file_csv’. The data should be in the same directory as this file.
Read the data into R and assign it to ‘emissions’
emissions
# A tibble: 23,307 x 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
use ‘clean_names’ from the janitor package to make the names easier to work with assign the output to ‘tidy_emissions’ show the first 10 rows of tidy_emissions’
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 x 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
Name | Piped data |
Number of rows | 228 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 228 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 216 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 1994.00 | 0.00 | 1994.00 | 1994.00 | 1994.00 | 1994.00 | 1994.00 | ▁▁▇▁▁ |
annual_co2_emissions_per_capita | 0 | 1 | 4.99 | 6.92 | 0.02 | 0.57 | 2.73 | 7.36 | 59.77 | ▇▁▁▁▁ |
# A tibble: 12 x 4
entity code year annual_co2_emissions_per_ca~
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 1994 1.03
2 Asia <NA> 1994 2.31
3 Asia (excl. China & India) <NA> 1994 3.25
4 EU-27 <NA> 1994 8.46
5 EU-28 <NA> 1994 8.63
6 Europe <NA> 1994 8.85
7 Europe (excl. EU-27) <NA> 1994 9.36
8 Europe (excl. EU-28) <NA> 1994 9.22
9 North America <NA> 1994 14.1
10 North America (excl. USA) <NA> 1994 5.07
11 Oceania <NA> 1994 11.7
12 South America <NA> 1994 2.11
start with ‘emissions_1994’ THEN use ‘slice_max’ to extract thh 15 rows with the ‘per_capita_co2_emissions’ assign the output to ‘max_15_emitters’
start with ‘emissions_1994’ THEN use ‘slice_min’ to extract the 15 rows with the lowest values assign the output to ‘min_15_emitters’
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated
setdiff(max_min_15_csv, max_min_15_tsv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
Are there any differences?
start with ‘emissions_1994’ THEN use ‘mutate’ to reorder ‘country’ according to ‘per_capital_co2_emissions’
preview: preview.png