Reading and writing data

A short description of the post.

  1. Load the R packages we will use.
  1. Download \(CO_2\) emissions per capita from Our World in Data into the directory for this post.

  2. Assign the location of the file ‘file_csv’. The data should be in the same directory as this file.

Read the data into R and assign it to ‘emissions’

file_csv  <- here("_posts",
                  "2022-02-22-reading-and-writing-data",
                  "co-emissions-per-capita.csv")

emissions <- read_csv(file_csv)
  1. Show the first 10 rows (observations of) ‘emissions’.
emissions  
# A tibble: 23,307 x 4
   Entity      Code   Year `Annual CO2 emissions (per capita)`
   <chr>       <chr> <dbl>                               <dbl>
 1 Afghanistan AFG    1949                              0.0019
 2 Afghanistan AFG    1950                              0.0109
 3 Afghanistan AFG    1951                              0.0117
 4 Afghanistan AFG    1952                              0.0115
 5 Afghanistan AFG    1953                              0.0132
 6 Afghanistan AFG    1954                              0.013 
 7 Afghanistan AFG    1955                              0.0186
 8 Afghanistan AFG    1956                              0.0218
 9 Afghanistan AFG    1957                              0.0343
10 Afghanistan AFG    1958                              0.038 
# ... with 23,297 more rows
  1. Start with ‘emissions’ data THEN

use ‘clean_names’ from the janitor package to make the names easier to work with assign the output to ‘tidy_emissions’ show the first 10 rows of tidy_emissions’

tidy_emissions <- emissions %>% 
  clean_names()

tidy_emissions
# A tibble: 23,307 x 4
   entity      code   year annual_co2_emissions_per_capita
   <chr>       <chr> <dbl>                           <dbl>
 1 Afghanistan AFG    1949                          0.0019
 2 Afghanistan AFG    1950                          0.0109
 3 Afghanistan AFG    1951                          0.0117
 4 Afghanistan AFG    1952                          0.0115
 5 Afghanistan AFG    1953                          0.0132
 6 Afghanistan AFG    1954                          0.013 
 7 Afghanistan AFG    1955                          0.0186
 8 Afghanistan AFG    1956                          0.0218
 9 Afghanistan AFG    1957                          0.0343
10 Afghanistan AFG    1958                          0.038 
# ... with 23,297 more rows
  1. The with the ‘tidy_emissions’ THEN use ‘filter’ to extract rows with ‘year == 1994’ THEN use ‘skim’ to calculate the descriptive statistics
tidy_emissions %>% 
  filter(year == 1994) %>% 
  skim()
Table 1: Data summary
Name Piped data
Number of rows 228
Number of columns 4
_______________________
Column type frequency:
character 2
numeric 2
________________________
Group variables None

Variable type: character

skim_variable n_missing complete_rate min max empty n_unique whitespace
entity 0 1.00 4 32 0 228 0
code 12 0.95 3 8 0 216 0

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
year 0 1 1994.00 0.00 1994.00 1994.00 1994.00 1994.00 1994.00 ▁▁▇▁▁
annual_co2_emissions_per_capita 0 1 4.99 6.92 0.02 0.57 2.73 7.36 59.77 ▇▁▁▁▁
  1. 12 Observations have a mission code. How are these observations different? start with ‘tidy_emissions’ then extract rows with year == 1994 and are missing a code.
tidy_emissions %>% 
  filter(year == 1994, is.na(code))
# A tibble: 12 x 4
   entity                     code   year annual_co2_emissions_per_ca~
   <chr>                      <chr> <dbl>                        <dbl>
 1 Africa                     <NA>   1994                         1.03
 2 Asia                       <NA>   1994                         2.31
 3 Asia (excl. China & India) <NA>   1994                         3.25
 4 EU-27                      <NA>   1994                         8.46
 5 EU-28                      <NA>   1994                         8.63
 6 Europe                     <NA>   1994                         8.85
 7 Europe (excl. EU-27)       <NA>   1994                         9.36
 8 Europe (excl. EU-28)       <NA>   1994                         9.22
 9 North America              <NA>   1994                        14.1 
10 North America (excl. USA)  <NA>   1994                         5.07
11 Oceania                    <NA>   1994                        11.7 
12 South America              <NA>   1994                         2.11
  1. Start with tidy_emissions THEN use ‘filter’ to extract rows with year == 1994 and without missing codes THEN use ‘select’ to drop the ‘year’ variable THEN use ‘rename’ to change the variable ‘entity’ to ‘country’ assign the output to ‘emissions_1994’
emissions_1994 <- tidy_emissions %>% 
  filter(year == 1994, !is.na(code))   %>%
  select(-year)  %>% 
  rename(country = entity)
  1. Which 15 countries have the highest ‘per_capita_co2_emissions’?

start with ‘emissions_1994’ THEN use ‘slice_max’ to extract thh 15 rows with the ‘per_capita_co2_emissions’ assign the output to ‘max_15_emitters’

max_15_emitters <- emissions_1994 %>%
  slice_max(annual_co2_emissions_per_capita, n = 15)
  1. Which 15 countries have the lowest ‘per_capita_co2_emissins’?

start with ‘emissions_1994’ THEN use ‘slice_min’ to extract the 15 rows with the lowest values assign the output to ‘min_15_emitters’

min_15_emitters <- emissions_1994 %>%
  slice_min(annual_co2_emissions_per_capita, n = 15)
  1. Use ‘bind_rows’ to bind together the ‘max_15_emitters’ and ‘min_15_emitters’ assign the output to ‘max_min_15’
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
  1. Export ‘max_min_15’ to 3 file formats
max_min_15  %>% write_csv("max_min_15.csv") # comma-separated values
max_min_15  %>% write_tsv("max_min_15.tsv")  # tab separated
max_min_15  %>% write_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Read the 3 file formats into R
max_min_15_csv <-  read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <-  read_tsv("max_min_15.tsv")  # tab separated
max_min_15_psv <-  read_delim("max_min_15.psv", delim = "|") # pipe-separated
  1. Use ‘setdiff’ to check for any difference among ‘max_min_15_csv’, ‘max_min_15_tsv’ and ‘max_min_15.psv’
setdiff(max_min_15_csv, max_min_15_tsv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
#   annual_co2_emissions_per_capita <dbl>

Are there any differences?

  1. Reorder ‘country’ in ‘max_min_15’ for plotting and assign to max_min_15_plot_data

start with ‘emissions_1994’ THEN use ‘mutate’ to reorder ‘country’ according to ‘per_capital_co2_emissions’

max_min_15_plot_data <- max_min_15 %>%
  mutate(country = reorder(country, annual_co2_emissions_per_capita))
  1. Plot ‘max_min_15_plot_data’
ggplot(data = max_min_15_plot_data,
       mapping = aes(annual_co2_emissions_per_capita, country)) +
  geom_col() +
  labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
       subtitle = "for 1994",
       x = NULL,
       y= NULL)

  1. Save the plot directory with this post
ggsave(filename = "preview.png", 
       path = here("_posts", "2022-02-22-reading-and-writing-data"))
  1. Add preview.png to yaml chuck at the top of this file
preview: preview.png